

New England's Forest Industry Opportunities

Keynote Presented at the NEFF 2024 Annual Meeting

By Dr. Habib J. Dagher, Executive Director Advanced Structures and Composites Center hd@maine.edu June 6th, 2024

Awards & Honors

Over 40 state, national and international excellence awards

2015 Transportation Champion of Change

2011 Engineering Excellence

MAINE DEVELOPMENT FOUNDATION

2008 "Champion of Economic Development"

2019 Transportation Champion

Maine International Trade Center

2017 Innovator of the Year

Three 2019 Guinness World Records

2016 Top 25 Newsmakers

2011 Charles Pankow Award for Innovation

ASCC Partners and Clients

Strategic Plan 2020

GEM - Green Energy and Materials

Developing the Technologies and Educating the Leaders

Application Space

Civil Infrastructure, Renewable Energy, Defense, Marine and Aerospace

Some steel strands replaced with carbon composite strands

CONTINUOUS FORMING MACHINE (CFM):

Rebars + Other thermoplastic shapes

REBAR:

- 12 ft/min
- Twice strength of steel, while reducing weight and corrosion.
- Field bendable without special tooling.
- Recyclable.

US Potential for Floating Wind

60% of US resource requires floating technology US Earth Shot BOEM awarded CA leases: GOM next

Floating Offshore Wind

6. Additive Manufacturing Opportunities

Additive Manufacturing Opportunities

New World's Largest Polymer 3D Printer

Building Technology Research Scalable Sustainable Affordable Housing

Materials Innovations

Biobased Insulation, Wall Board, and Gypsum Replacement

Biobased Additive Manufacturing Feedstock

Manufacturing Innovations

- Automated Feedback for Process Improvement
- Large Scale Additive
- Selective Subtractive
- Automated Fiber Placement
- Pick and Place
 - Flowable Media: Insulation
 - Flexible Media: Plumbing/ Conduit
 - Solid Elements: Fenestration/ Fixtures

Integration Innovations

Modular Volumetric

Modular Panelized

Can we Use Wood Residuals to Print Homes? MAIN

1 million tons/year 600ft² home needs 10 tons

Sawmills Residues

Stronger than Concrete

Demonstration: BioHome3D World's first 100% Biobased 3D Printed House

Bio 3D

Technology Roadmap for Biobased Modular 3D Printed Homes

2026

2025

Factory of the Future

2024

2023

FoF 1.0

Flame retardant chemistry

Scale up feedstock with flame retardant

9 Units Penquis

2022

150lb/hr

100% biobased feedstock

500lb/hr

Integrated chases, R-value

BioHome3D 2.0

What's Next: A 3D Printed Neighborhood For the Homeless

Demonstration: Additively Manufactured Floor Cassette 100% Biobased 3D Printed Modular Component Modular Panelized Systems Integration

2. CLT

Photo by Joe Anastasi

The Case for CLT Manufacturing In Maine

MAINE MASS TIMBER Commercialization Center

Maine and its vast forest sit atop one of the largest population centers on the planet, making it an ideal location to produce mass timber products to feed the growing urban demand for timber housing.

Recent CLT Research at UMaine

- Two new grades of CLT using local SPF-S
- Qualification testing of Eastern hemlock CLT
- Bond Durability of CLT using 7 Northeastern species
- Hybrid SPF-S / LSL (softwood/hardwood)
- CLT with gaps
- Blast resistant CLT buildings (Woodworks)
- Thermally insulated CLT using wood fiber

3. Energy retrofit/ Wood Fiber Insulation

https://efficiencymatrix.com/upside-residential-energy-efficiency-retrofit/

5. WOOD FIBER INSULATION

% of Insulation in New Single Family Homes

WOOD FIBER INSULATION (WFI)

- Renewable, sustainable, carbon neutral
- Biodegradable/Recyclable
- Low embodied energy
- Competitive R-value
- Cost competitive
- Supports local Maine industry as an outstanding outlet for mill residuals

CLT/WFI Building Monitoring

Field study: Hygrothermal and energy performance of a school building made of CLT insulated with WFI

Cornerspring Montessori School at Belfast, ME (Built in summer 2021)

CLT Building Construction from start to finish by OPAL Architecture

New construction

Retrofit

SM²ART Research Thrust Areas

CNF modeling and

simulations

Application of highperformance computing and molecular dynamics simulations to predict CNF

morphology and dispersion

Cellulose nanofiber production

- Reduction of water and energy usage
- > Surface treatments
- Drying and dewatering methods
- > Fibrillation processes

Biocomposite applications and sustainability

- Structural applications (housing marine, etc.)
- applications
- thermoplastic composites

Material formulation and process development

- Development of hybrid bio-composites for AM feedstock
- Optimizing rheological and thermal properties for ΑM

Composite innovation

- Integration of CNFs into polymer matrices
- Replacing petroleum sources with renewable biomass
- > Achieving desired mechanical performance

High throughput, low cost AM

- > Development of highthroughput extruder (500 lbs/hr)
- >In-process qualification using multivariate sensors
- > Causal modeling to close AM feedback loop

- Lightweight bio-foams
- Molding and tooling
- Recyclability of CNF

CNF reinforced biocomposite AM feedstock

Capabilities

MAINE

Chemistry and materials development

Process innovation

Composite innovation

Characterization and analysis

Nanocellulose

Multidisciplinary expertise

Simulations

Prototyping and direct fabrication

Technical Collaboration Program

Value to partners and ecosystem

- First customer connections
- Creating "market pull" for biobased materials
- ➤ Identifying high volume opportunities for cellulose nanofibrils, wood residuals, and large area additive manufacturing

1865 THE UNIVERSITY OF

Applications TRL Overview

Industry Technology Collaborations

Explore

Engage

Execute

 Opportunity for industry to discover and apply new manufacturing technologies

- Work with manufacturing staff to develop scope of work
- Phase 1 \$40KPhase 2 \$200K
- 1:1 In Kind Contribution

Bio-based Materials, Buildings, Packaging, Automotive, Marine, Off-Shore Wind Energy

- Through the SM²ART program, US industry can access the facilities and expertise of the MDF at ORNL and/or UMaine by submitting proposals aligned with the core themes of the sustainable composite manufacturing project.
- > Selected proposals for "tech collaborations" will result in short-term, cost-shared projects.
 - > Phase I: \$80K with DOE providing \$40K and industry providing min. \$40K
 - ➤ Phase II, if Phase I shows exceptional promise: \$400K with DOE providing \$200K and industry providing min. \$200K

A special thank you to the team who conceptualized, designed, printed and constructed $\mathbf{Bi} \odot \mathbf{m} \mathbf{3} \mathbf{D}$

Anderson

Matthew **Ayotte**

Wesley Bisson

Hilary Buntrock

Angelina Buzzelli Giovanni Calcagno

Tyler Chase

Katherine Clukey

Alexander Cole

Matthew Cowing

Seth **Dixon**

Bryan Doucette

Shawn Eary

Russell Edgar

Carson Fiscus

Andrew Foster

Richard Fredericks

Samuel Furth

Douglas Gardner

Andrew Gifford

Evan Gilman

Zack Guay Oliver Hafford

Benjamin Herzog

Billy Howell

Melissa Kelly

Kelsey Kunich

Audrey Laffely

Richard Lafreniere

Claire Liedtka

Susan MacKay

Aaron Madore

Michael **McCarty**

Caleb Miller

Walter Morris

Sam

Tess Mylander

Jared Palmer

Joshua Pearse

Thomas Perkins

Spencer Sansouci

Camden Sawyer

Camerin Seigars

Emma Sheffield

Lucas Shorette

Gregory Simms

Douglas Slocum

Thomas Snape

Emily Stauffer

Jason Stevens

Quest Scott Christopher Teichman Tomlinson Urquhart

Lincoln Varnum

Lu Wang

Justin Willis

Daniel Wortman

